sábado, 31 de julio de 2010

ANÁLISIS DE LA VELOCIDAD

Para explicar como debe ser el analisis de la velocidad de utilizara un ejemplo. Se realizará un análisis del vector velocidad observando las propiedades de sus componentes. Sea un cuadrilátero articulado ABCD, mostrado en la Fig. 3.2, tal que la manivela de entrada o impulsora AB (eslabón 1) gira con velocidad angular ω1. El punto B tendrá una velocidad tangencial dad por
VB = ω1r1 (3.6)
y que será perpendicular al eslabón AB. Esta velocidad puede descomponerse en V’BC y V“BC, de modo que tales componentes sean respectivamente de la dirección del acoplador BC (eslabón 2) y normal a éste. Es decir:
VB = V’BC + V“BC (3.7)
4
Como el punto B pertenece también al eslabón 2, que al igual que los restantes es rígido, todos los puntos del segmento BC de esta barra tendrán la misma componente de la velocidad según la dirección BC. En particular, el punto C gozará de tal propiedad. Ahora bien, el punto C también pertenece al eslabón 3 y ha de girar en torno al punto D, con velocidad absoluta normal a CD. Por tanto, llevando V’CB = V’BC y trazando por el extremo de V’CB una perpendicular a BC, se obtiene VC.




La determinación de la velocidad del punto E del acoplador puede hallarse de forma parecida. Descompóngase VB en dos componentes: una de la dirección BE y la otra normal a ella. La componente V ’BE se traslada a E, ya que V’EB = V’BE, por ser BE indeformable (el mismo eslabón 2).
De igual manera, de la velocidad VC se encuentra la componente V’CE paralela a la dirección CE y se traslada al punto E. La velocidad absoluta del punto, VE, se encontrará en la intersección de las dos perpendiculares por los extremos de los vectores V’EC y V’EB, respectivamente a EC y EB. Como práctica podemos intentar averiguar la a velocidad del punto E (figura 3.2).
Según las construcciones realizadas en los diversos eslabones, se llegará a la conclusión que en una misma barra la velocidad de un punto cualquiera (por ejemplo, el C) relativa a otro punto de su propio eslabones (por ejemplo, el B) es siempre perpendicular al segmento que une dichos puntos (en este caso, normal a BC).
Aislando el eslabón BC con las velocidades obtenidas anteriormente VB y VC (figura 3.3) se transporta a C el vector VB. Como la proyección sobre BC de ambas velocidades ha de ser la misma, se llega al resultado que la diferencia de estos dos vectores ha de ser normal a la recta que une los dos puntos. Si se denomina velocidad de B respecto a C mediante la notación VBC, se tiene
VBC = VB – VC (3.8)
Esta velocidad relativa, como se ve en la Fig. 3.3 es normal a BC. El giro de la barra BC está originado por la existencia de velocidad relativa no nula de un punto con relación a otro del mismo eslabón. Si se hubiese hallado la velocidad relativa VCB, ésta sería de sentido opuesto a la encontrada VBC.
5

La velocidad angular ω2, con que el eslabón 2 está girando con relación al fijo 4, se obtiene siempre dividiendo el módulo de la velocidad relativa de un punto extremo de la barra con relación al del otro extremo, por las distancia entre ambos puntos.
Tal como se observa en la figura 3.3, ω2 es del sentido de la agujas del reloj tal como se desprende de los sentidos de las velocidades relativas VBC ó VCB y, por lo dicho, su módulo es BC 22rVVCBCB==ω (3.9)
Si, de forma análoga, se desea determinar la velocidad angular del eslabón 3, al ser VC la velocidad absoluta de C y siendo VD = 0, VC es también la velocidad relativa de C con respecto a D; esto es, VC = VCD. En consecuencia, la velocidad angular ω3 (figura 3.2) resulta ser CD 33rVVCCD==ω (3.10)
De igual modo se puede deducir la velocidad angular de cualquier eslabón del mecanismo.

VELOCIDAD

Dado que el movimiento es inherente a las máquinas, las velocidades y aceleraciones son muy importantes tanto en el diseño como en el análisis de los componentes de las máquinas.
Velocidad es la relación entre el cambio de posición de un punto y el tiempo invertido en tal cambio. Dado su carácter de magnitud dirigida, resulta tener las propiedades inherentes a un vector.
Cuando se trata de un cambio discreto de posición, donde el tiempo no es muy reducido, se denomina velocidad media. En cambio, si la medición se realiza en un intervalo muy corto de tiempo tendiendo a cero, la velocidad resulta entonces instantánea. En este curso la velocidad que se empleará será siempre esta última.
La velocidad de un punto puede ser absoluta o relativa, según que se refiera a un punto o sistema fijo, en el primer caso; o a un punto o sistema móvil, en el segundo. No es necesario que los sistemas de referencia estén completamente en reposo, ya que esto ocurrirá muy pocas veces para determinar una velocidad absoluta. Si los puntos que se suponen fijos de un mecanismo, generalmente unidos a una estructura o armazón, se mueve porque la estructura lo hace, pueden considerarse absolutas las velocidades de los puntos móviles del mecanismo con relación a sus puntos fijos. Las velocidades, como ha quedado dicho, son magnitudes vectoriales, y por ello, sometidas a sus conocidas reglas de adición y sustracción.
Supóngase un punto A con un movimiento plano en el plano XY, Figura 3.1 que en el instante inicial se encuentra en A, cuando t = t1 y pasará ocupar la posición A’, cuando t = t2. Los vectores r y r’ que definen ambas posiciones, tiene de módulos r y r’.
2

ACELERACION ANGULAR



Se define la aceleración angular como el cambio que experimenta la velocidad angular por unidad de tiempo. Se denota por la letra griega alfa α. Al igual que la velocidad angular, la aceleración angular tiene carácter vectorial.

Se expresa en radianes por segundo al cuadrado, o s-2, ya que el radián es adimensional.

En la figura
Aceleración angular. En el caso general, cuando el eje de rotación no manteniene una dirección constante en el espació, la aceleración angular no tiene la dirección del eje de rotación

VELOCIDAD ANGULAR


La velocidad angular es una medida de la velocidad de rotación. Se la define como el ángulo girado por unidad de tiempo y se la designa mediante la letra griega . Su unidad en el S.I. es el radian por segundo (rad/s).

La introducción del concepto es de importancia por la simplificación que supone en la descripción del movimiento de rotación del sólido, ya que, en un instante dado, todos los puntos del sólido poseen la misma velocidad angular, en tanto que a cada uno de ellos le corresponde una velocidad tangencial que es función de su distancia al eje de rotación. Así pues, la velocidad angular caracteriza al movimiento de rotación del sólido rígido en torno a un eje fijo.

Aunque se la define para el movimiento de rotación del sólido rígido, también se la emplea en la cinemática de la partícula o punto material, especialmente cuando ésta se mueve sobre una trayectoria cerrada (circular, elíptica,etc).

jueves, 29 de julio de 2010

RODADURA PURA

La rodadura implica que el cuerpo que rueda sobre una superficie lo hace sin resbalar o deslizarse con respecto a ésta, de modo que el punto o puntos del cuerpo que se hallan instantáneamente en contacto con la superficie se encuentran instantáneamente en reposo (velocidad nula con respecto a la superficie).

La condición de rodadura significa que, en un instante cualquiera, los puntos de un cuerpo que están en contacto con una superficie se encuentran momentáneamente en reposo. Dichos puntos determinan el eje instantáneo de rotación pura del cuerpo. Los demás puntos del cuerpo tendrán en ese instante una cierta velocidad, perpendicular al eje instantáneo de rotación y a la línea que une dicha partícula con dicho eje y de módulo proporcional a dicha distancia. Esto equivale a decir que el cuerpo está girando en cada instante alrededor de la generatriz de dicho cuerpo que está en contacto con la superficie, con una cierta velocidad angular ω.

TIPOS DE MECANISMOS

TIPOS DE MECANISMOS
  • Engranajes
  • Pistón biela
  • Levas
  • Mecanismos de poleas y correa
  • Mecanismos de barras articuladas
  • Mecanismos de biela y manivela
  • Mecanismo de Tornillo/tuerca

El análisis de un mecanismo se debería hacer en el siguiente orden:

miércoles, 28 de julio de 2010

MECANISMO

Se llama mecanismo a
un conjunto de sólidos resistentes, móviles unos respecto de otros, unidos entre sí mediante diferentes tipos de uniones, llamadas pares cinemáticos (pernos, uniones de contacto, pasadores, etc.), cuyo propósito es la transmisión de movimientos y fuerz
as. También se usa el término mecanismo para designar a las abstracciones teóricas que modelizan el funcionamiento de las máquinas reales, y de su estudio se ocupa la Teoría de mecanismos.
Basándose en principios del álgebra lineal y física, se crean esqueletos vectoriales, con los cuales se forman sistemas de ecuaciones. A diferencia de un problema de cinemática o dinámica básico, un mecanismo no se considera como una masa puntual y, debido a que los elementos que conforman a un mecanismo presentan combinaciones de movimientos relativos de rotación y traslación, es necesario tomar en cuenta conceptos como centro de gravedad, momento de inercia, velocidad angular, etc.
La mayoría de veces un mecanismo puede ser analizado utilizando un enfoque bidimensional, lo que reduce el mecanismo a un plano.
En mecanismos más complejos y, por lo tanto, más realistas, es necesario utilizar un análisis espacial. Un ejemplo de esto es una rótula esférica, la cual puede realizar rotaciones tridimensionales.